[image: image1.png]

PRoCon Frostbite Specifications
Table of Contents

1BFBC2 PRoCon Specifications

3Preamble

5Program usage

5Command line arguments

6Client <-> PRoCon Layer Extended Protocol

6Encryption

6Protocol behaviour variations

6Changes to commands originating from client

7Server events

7Miscellaneous

8Accounts

9Plugins

10Communication

10Packages

11Client commands

11Miscellaneous

14Communication

14Accounts

15Layer

16Plugins

16Variables

18Internal commands

18Call of duty text colouring standard

19Commands

19Miscellaneous

19Interface Output

20Saved interface preferences

21Accounts

22Plugins

22Layers

22Players Tab

23Maplist Tab

23Tasks

24Variables

24Media

25Private Commands

25Servers

25TCAdmin

26Options

27Interface

28Global Variables

29Plugins

29Notes

29HTTP Server

29Purpose

30Cache

30Vanilla Requests

31Plugin Requests

Preamble
The preamble will be written by somebody who can write better-er ;) I’ll just say that this document is targeted at other rcon makers wanting to connect their applications with a procon layer and utilise some of its features, plugin makers and general users of the application that want procon to do more. Procon started off with the best intentions but quickly turned into crazy mad scientist code that upon beta-release simply “gets the job done”. I hope in the not too distant future to rewrite and rework some of the areas of the program, but I don’t have any intentions of making the interface anything above functional and user friendly.
Considering I have very poor commenting in procon’s code (I’m not being paid for this =P) I’ve done my best to throw everything into this document. I have undoubtedly missed things though and made plenty of mistakes to last a while in fixing up ;)

Revision: 2
Specifications matching to BFBC2 PRoCon version 0.5.2.1
This document will change as the protocol and Procon evolve, especially while Procon is in beta.
Program usage
Command line arguments
All commands are in the format “–variable value”
	Variable:
	name

	Effect:
	Changed the title of the procon instance. Handy if you’re running multiple servers and need to quickly identify them in the taskbar.

	Example:
	PRoCon.exe –name “UserID: 55551”

	Variable:
	blockupdatechecks

	Effect:
	Disables all update checks and downloads. Also disables the check in the options window. Useful if you have an alternate way to update procon.

	Example:
	PRoCon.exe –blockupdatechecks 1

	Variable:
	maxservers

	Effect:
	Sets the maximum number of servers a procon instance can manage.

	Example:
	PRoCon.exe –maxservers 5

	Variable:
	console

	Effect:
	Opens procon up in a dumb console (not a useful interface). This will save about 3/5’ths of the memory procon would usually use and still provide a layer, plugins etc. All the functionality of a layer with less memory.

	Example:
	PRoCon.exe –console 1

Client <-> PRoCon Layer Extended Protocol

Encryption

At the time of writing all of the passwords regarding accounts are sent as plain text. This will change to a symmetric key encryption algorithm soon, most likely when I implement the interface for remotely controlling a procon layer or soon after release. This is to prevent anybody sniffing out the passwords easily but encrypted within reasonable limitations. It’s just an rcon application after all, not banking software.
Protocol behaviour variations

The procon layer alters some of the behaviours of BFBC2 standard requests and responses. The alterations while communicating with a procon layer can be found below.
Changes to commands originating from client
	Request:
	logout

	Effect:
	Command is processed and blocked at the procon layer. Client will be logged out of the layer, but the layer will remain logged into the BFBC2 server.

	Request:
	login.plaintext and login.hashed

	Effect:
	Command is processed and blocked at the procon layer. Client will be logged into the layer, but the layers logged in status will be unchanged to the BFBC2 server.

	Request:
	quit

	Effect:
	Command is processed and blocked at the procon layer. Client will be disconnected from the layer, but the layer will remain connected to the BFBC2 server.

	Request:
	vars.adminPassword [<string: adminpassword>]

	Effect:
	Command is blocked at the procon layer. This is blocked so clients cannot get access to the direct rcon password.

	Comments:
	See procon.account.setPassword to change a layer accounts password.

Server events
Miscellaneous
	Request:
	procon.shutdown

	Response:
	OK

	Effect:
	Signifies that the procon server is shutting down and the connection is about to be terminated.

	Request:
	procon.updated <string: node uid> <string: command> [[<vars: variable1> ...]

	Response:
	OK

	Effect:
	Alerts connected admins that a command was successful by another client on the procon layer, or by the layer itself, to the BFBC2 server.

	Comments:
	This event is in place so the layer and all connected accounts can remain in sync with any changes to the BFBC2 server. A client receiving this command can assume the postfixed words make up a successful command and reflect the status of the BFBC2 server. This event is sent to all clients, even if they originally sent the command that made the change.
While good in theory on my computer I wouldn’t doubt this will give me some debugging grief after release =)

Successful commands that won’t be passed on include:

"admin.listPlayerBans", "admin.listIPBans", “admin.listPlayers", "admin.getPlaylist", "admin.getPlaylists", “reservedSlots.list", "mapList.list", "admin.supportedMaps", "serverInfo", "version", "admin.currentLevel"

	Example:
	Two accounts are logged into the procon layer, Account1 and Account2. Note that both Account1 and Account2 get Account1’s UID. This UID will tell Account1 the command originated on its command connection and can be ignored, while it will not match Account2’s UID so Account2 will process the event.
Account1 to Layer (CMD): procon.eventsEnabled true "MY_UID"
Layer to Account1 (CMD): OK

Account2 to Layer (CMD): procon.eventsEnabled true "UNIQUE_UID"
Layer to Account2 (CMD): OK

Account1 to Layer (CMD): vars.gamePassword "SecretPassword"
Layer to BFBC2 (CMD): vars.gamePassword "SecretPassword"
BFBC2 to Layer (CMD): OK

Layer to Account1 (CMD): OK

Layer to Account1 (EVNT): procon.updated "MY_UID" vars.gamePassword SecretPassword

Account1 to Layer (EVNT): OK

Layer to Account2 (EVNT): procon.updated "MY_UID" vars.gamePassword SecretPassword

Account2 to Layer (EVNT): OK

	
	Two accounts are logged into the procon layer, Account1 and Account2. Note that since the final parent node was connected directly to the BFBC2 server and ultimately had nowhere to register its UID then it will be blank.
Layer to BFBC2 (CMD): vars.hardCore true

BFBC2 to layer (CMD): OK

Layer to Account1 (EVNT): procon.updated "" vars.hardCore true

Account1 to Layer (EVNT): OK

Layer to Account2 (EVNT): procon.updated "" vars.hardCore true

Account2 to Layer (EVNT): OK

Accounts
	Request:
	procon.account.onLogin <string: username> <int: privileges>

	Response:
	OK

	Effect:
	Account with <username> has logged into the procon layer.

	Scope:
	Sent to all logged in accounts with procon privileges.

	Request:
	procon.account.onLogout <string: username>

	Response:
	OK

	Effect:
	Account with <username> has logged out of the procon layer.

	Scope:
	Sent to all logged in accounts with procon privileges.

	Request:
	procon.account.onUidRegistered <string: uid> <string: username>

	Response:
	OK

	Effect:
	Account with <username> successfully registered <uid>.

	Scope:
	Sent to all logged in accounts.

	Request:
	procon.account.onCreated <string: username>

	Response:
	OK

	Effect:
	Account with <username> has been created.

	Scope:
	Sent to all logged in accounts with procon privileges.

	Request:
	procon.account.onDeleted <string: username>

	Response:
	OK

	Effect:
	Account with <username> has been deleted.

	Scope:
	Sent to all logged in accounts with procon privileges.

	Request:
	procon.account.onAltered <string: username> <int: privileges>

	Response:
	OK

	Effect:
	Account with <username> has had their privileges changed on this procon layer.

	Scope:
	Sent to all logged in accounts with procon privileges.

Plugins
	Request:
	procon.plugin.onLoaded <string: classname> <string: pluginname> <string: pluginauthor> <string: pluginwebsite> <string: pluginversion> <string: plugindescription> <int: number_of_variables; n> [[<string: variablename> <string: variabletype> <string: variablevalue>] ... x n]

	Response:
	OK

	Effect:
	Plugin with <classname> has been loaded on the server.

	Scope:
	Sent to all logged in accounts with procon privileges on the current layer connection.

	Comments:
	This can occur when the layer reloads the plugins

	Request:
	procon.plugin.onEnabled <string: classname> <bool: enabled>

	Response:
	OK

	Effect:
	Plugin with <classname> has been enabled.

	Scope:
	Sent to all logged in accounts with procon privileges on the current layer connection.

	Request:
	procon.plugin.onVariablesAltered <string: classname> <int: number_of_variables; n> [[<string: variablename> <string: variabletype> <string: variablevalue>] ... x n]

	Response:
	OK

	Effect:
	Plugin with <classname> has had one or more variables altered, sending a whole new variable string.

	Scope:
	Sent to all logged in accounts with procon privileges on the current layer connection.

Communication

	Request:
	procon.admin.onYell <string: namestack> <string: message> <int: displaytime> <string: playersubset> <vars: target>

	Response:
	OK

	Effect:
	An admin has sent a message through the chat panel.

	Scope:
	Sent to all logged in accounts.

	Comments:
	The playersubset will match that specified in the bfbc2 specs but at a later date may include the subset “admin” with no target to only show the messages to other admins or with a target to only message a single admin.

	Request:
	procon.admin.onSay <string: namestack> <string: message> <string: playersubset> <vars: target>

	Response:
	OK

	Effect:
	An admin has sent a message through the chat panel.

	Scope:
	Sent to all logged in accounts.

	Comments:
	The playersubset will match that specified in the bfbc2 specs but at a later date may include the subset “admin” with no target to only show the messages to other admins or with a target to only message a single admin.

Packages

	Request:
	procon.packages.onDownloading <string: uid>

	Response:
	OK

	Effect:
	The layer has started downloading a package from phogue.net

	Scope:
	Sent to all logged in accounts.

	Request:
	procon.packages.onDownloaded <string: uid>

	Response:
	OK

	Effect:
	The layer has successfully downloaded a package from phogue.net (no communication problems with phogue.net)

	Scope:
	Sent to all logged in accounts.

	Request:
	procon.packages.onDownloadError <string: uid> <string: error>

	Response:
	OK

	Effect:
	The layer could not download a package from phogue.net. More information about the error in the argument <error>

	Scope:
	Sent to all logged in accounts.

	Request:
	procon.packages.onInstalling <string: uid>

	Response:
	OK

	Effect:
	The layer is unzipping a package

	Scope:
	Sent to all logged in accounts.

	Request:
	procon.packages.onInstalled <string: uid> <bool: restart>

	Response:
	OK

	Effect:
	The layer has successfully unzipped a downloaded package. Depending on the type of package a restart may be required which will be defined in <restart>

	Scope:
	Sent to all logged in accounts.

Client commands
Miscellaneous
	Request:
	procon.login.username

	Response:
	procon.login.username <string: username>

	Response:
	InvalidUsername

	Response:
	InsufficientPrivileges

	Effect:
	Login process will take <username> into account when validating.

	Comments:
	While I can only say it in theory at the time of writing I believe any bfbc2 remote console application can connect to the procon layer by sending just this command. Any third party connected clients will still have their privileges enforced on the procon layer.

I have added two variables that are taken into account when logging into the layer. These are experimental so they have not been put into the GUI or tested or.. you get the idea, use at your own risk. If you type the following commands into the console:

/procon.protected.vars.set guest_password "Password"

/procon.protected.vars.set guest_privileges 40519

Then a third-party application will be able to connect to the layer and have full privileges using the password “Password”. You can limit the privileges by changing the guest_privileges variable. You can change the password by changing guest_password variable.

If guest_password is blank or not set then the procon layer will not allow a login without a username and will respond with “InvalidUsername”.

	Request:
	procon.version

	Response:
	OK <string: version>

	Effect:
	Sends back the assembly version of the procon layer.

	Request:
	procon.registerUid <bool: register> [<string: uid>]

	Response:
	OK

	Response:
	ProconUidConflict

	Effect:
	Registers or deregisters a UID with the parent layer for a client command/event connection pair. See the event procon.updated for details on how this uid is used.

	Comments:
	The bfbc2 eventsEnabled command will still control wether events are sent from the layer. The uid only needs to be unique on the server layer, not in the entire tree of connections. BFBC2 PRoCon md5 hashes the current time and the clients’ username, but it can be anything provided it is unique. If a clash occurs ProconUidConflict will come back and BFBC2 PRoCon simply tries the same formula again.

	Request:
	procon.privileges

	Response:
	OK <uint: privilegesflags>

	Effect:
	Sends back the connections logged in users privileges flags. This will make procons interface reflect what a client can and cannot do on the connected layer.

	Request:
	procon.exec

	Response:
	OK

	Effect:
	Executes a command locally on the procon layer server as if the output had come from a plugin.

	Comments:
	Always responds with OK and will not provide any feedback for the commands you execute. Issuing a procon.protected.send (see internal commands) as the second word will send a command to the procon.layers connected server as if the procon layer had sent it itself. Changing vars.adminPassword will still be blocked.

	Scope:
	This command requires full procon privileges.

	Example:
	procon.exec procon.protected.pluginconsole.write "Written on the procon layers plugin console window"

	Example:
	Account1 to Layer: procon.exec procon.send vars.killCam true
Layer to Account1: OK

Layer to BFBC2: vars.killCam true

BFBC2 to Layer: OK

(then a procon.updated event will be fired in this instance)

	Request:
	procon.packages.install <string: uid> <string: version> <string: md5>

	Response:
	OK

	Effect:
	Downloads and installed a package from phogue.net provided a) the package is not installed or the package installed is a lower version

	Comments:
	Responds with OK if an attempt is being made to install the package (the request has been sent to phogue.net). After this events will be fired notyfing the client of success or not.

	Response:
	OK – Attempt is being made to download package from phogue.net

	Response:
	AlreadyInstalled – The package is already installed (or queued for installation on restart) with an identical or newer version

	Scope:
	This command requires full procon privileges.

	Example:
	procon.package.install “CBFBCSStatsphile” “1.0.0.0” “9e107d9d372bb6826bd81d3542a419d6”

Communication

	Request:
	procon.admin.yell <string: adminstack> <string: message> <int: displaytime> <string: playersubset> <vars: target>

	Response:
	OK

	Effect:
	Similar to admin.yell in effect but will bubble the command up the layers appending the various admins to the adminstack

	Request:
	procon.admin.say <string: adminstack> <string: message> <string: playersubset> <vars: target>onYell

	Response:
	OK

	Effect:
	Similar to admin.say in effect but will bubble the command up the layers appending the various admins to the adminstack

Accounts
	Request:
	procon.account.listAccounts

	Response:
	OK [[<string: username> <int: privileges>] ...]

	Effect:
	Sends back a list of all accounts with their privileges.

	Request:
	procon.account.listLoggedIn [<string: parameter=“uids”>]

	Response:
	OK [[<string: username>] ...]

	Response:
	OK [[<string: username> <string: registeredUid>] ...]

	Effect:
	Sends back a list of all logged in accounts.

	Request:
	procon.account.create <string: username> <string: password>

	Response:
	OK [[<string: username>] ...]

	Response:
	AccountAlreadyExists

	Effect:
	Create <username>’s account.

	Comments:
	A procon.account.onCreated event will also be fired. The password will require a key to encrypt at a later date.

	Request:
	procon.account.delete <string: username>

	Response:
	OK

	Response:
	AccountDoesNotExists

	Effect:
	Delete <username>’s account.

	Comments:
	A procon.account.onDeleted event will also be fired.

	Request:
	procon.account.setPassword <string: username> <string: password>

	Response:
	OK

	Response:
	AccountDoesNotExists

	Effect:
	Sets <username>’s account to<password>.

	Comments:
	Potentially a procon.account.onLogout event will be fired if the account is logged in to this current connection later. The password will require a key to encrypt at a later date.

Layer
	Request:
	procon.layer.setPrivileges <string: username> <int: privileges>

	Response:
	OK

	Response:
	AccountDoesNotExists

	Effect:
	Sets <username>’s account to have <privileges> on the current connections layer.

	Comments:
	A procon.account.onAltered event will also be fired.

Plugins
	Request:
	procon.plugin.listLoaded

	Response:
	OK [[<string: classname> <string: pluginname> <string: pluginauthor> <string: pluginwebsite> <string: pluginversion> <string: plugindescription> <int: number_of_variables; n> [<string: variablename> <string: variabletype> <string: variablevalue>] ... x n]

	Effect:
	Sends back a list of loaded plugins’ details.

	Request:
	procon.plugin.listEnabled

	Response:
	OK [[<string: classname>] ...]

	Effect:
	Sends back a list of enabled plugins’ classes. Additional information about each plugin can be requested by listloaded.

	Request:
	procon.plugin.enable <string: classname> <bool: enabled>

	Response:
	OK

	Response:
	AccountDoesNotExists

	Effect:
	Enables or disables a plugin on the current connections layer.

	Comments:
	A procon.plugin.onEnabled event will be fired if the plugin is enabled from disabled or vice-versa.

	Request:
	procon.plugin.setVariable <string: classname> <string: variablename> <string: value>

	Response:
	OK

	Effect:
	Sets <classname> plugin’s <variablename> to <value>

	Comments:
	A procon.plugin.onVariablesAltered event will also be fired. No validation of the value is done by the layer, it simply passes it on to the plugin.

Variables
	Request:
	procon.vars <string: variablename> [<string: value>]

	Response:
	OK <string: variablename> <string: value>

	Response:
	InsufficientPrivileges

	Effect:
	Sends back a single variable set on the procon layer. If the optional <value> is passed and the logged in connection has “Limited procon commands” then the value will be set and a response will be sent identical to a get command.

	Comments:
	This command will always return OK <variablename> <value>.

Getting: If the value is not set on the server at all then <value> will be a blank string. You only need to be logged into the layer to get variables. No other privileges are needed.

Internal commands

Below is a list of commands that a plugin can execute to change variables and behaviour of procon. If the account has sufficient privileges a connected client to a procon layer can use the procon.exec command to execute these internal commands on the procon layer.
None of the commands provide feedback or responses; however most will trigger events within the plugins and protocol for feedback. The list of these commands will expand greatly with requests from admins and plugin authors.
You can try any of these commands by typing placing a forward slash in front of the command in the console. I know they are lengthy in characters, I didn’t actually expect them to be used throughout procon so much when I started so naming them was for my sake only =)

Examples:

· /<command>

· /procon.protected.console.write "Hello World!"
Call of duty text colouring standard
Procon internally colours all of its rich text boxes using the call of duty standard of a caret (^) followed by a number 0-9. The following would result in a string with the names coloured respectively.

^0Black^1Maroon^MediumSeaGreen^3DarkOrange^4Royal Blue^5Cornflower Blue^6Dark Violet^7 Deep Pink^8Red^9Grey

BlackMaroonMedium Sea GreenDark OrangeRoyal BlueCornflower BlueDark VioletDeep PinkRedGrey
These colours are defaults but may be changed by users in the configs. See Variables.
	^0
	Black

	^1
	Maroon (PRoCon error message colour)

	^2
	Medium Sea Green

	^3
	Dark Orange

	^4
	Royal Blue

	^5
	Cornflower Blue

	^6
	Dark Violet

	^7
	Deep Pink

	^8
	Red

	^9
	Grey

Text formatting options:

	^b
	Bold

	^n
	Normal

	^i
	Italicized

	^^
	^ (Escape character)

Commands
Miscellaneous

	Command:
	procon.protected.send [[word] ...]

	Effect:
	Sends a command to the connected server (layer or bfbc2)

	Example:
	procon.protected.send vars.hardCore true

	Comments:
	Typing “vars.Hardcore true” into the console within procon is identical to typing “procon.protected.send vars.hardCore true”. The effect will be the same. Plugins can use this command to send commands to the connected server.

	Command:
	procon.protected.config.exec <string: filename>

	Effect:
	Executes a config file in the /Configs directory for the connection it was called on.

	Comments:
	Executing configs will recursively execute other configs 5 deep. After 5 calls the 6’th config will not be executed.

Interface Output
	Command:
	procon.protected.pluginconsole.write <string: text>

	Effect:
	Writes <text> to the plugin console window in the plugins tab >

	Comments:
	You can colour the text using call of duty style conventions.

	Command:
	procon.protected.console.write <string: text>

	Effect:
	Writes <text> to the console window in the console tab

	Comments:
	You can colour the text using call of duty style conventions.

	Command:
	procon.protected.chat.write <string: text>

	Effect:
	Writes <text> to the chat window in the chat tab

	Comments:
	You can colour the text using call of duty style conventions.

	Command:
	procon.protected.events.write <string: EventType> <string: Event> <string: EventText> <string: AdminName>

	Effect:
	Logs an event to the events tab. EventType should match a literal in PRoCon.Core.Events.EventType. Event should match a literal in PRoCon.Core.Events. CapturableEvents

	Comments:
	None.

	Command:
	procon.protected.notification.write <string: title> <string: text> [<bool: error>]

	Effect:
	Shows a notification from the tray icon with a set title, text and information icon. <error> is optional and if set to true will display an error icon instead.

	Comments:
	An option to enable/disable notifications by plugins will appear in the future. Use these sparingly to not annoy the user enough to disable them.

Saved interface preferences
	Command:
	procon.protected.events.captures <bool: CapturesClosed> <int: TotalCaptures> <bool: ListModified> [[<string: CaptureEvent>] ...]

	Effect:
	CapturesClosed – Shows or hides the captured events popout options in the events tab.

TotalCaptures – The total number of captures to show in the events tab

ListModified – True if the list has been modified with preferences, else false the list is unmodified so all events should be captured.

[[CaptureEvent]...] – A list of events to catch and display in the events tab.

	Command:
	procon.protected.playerlist.settings <bool: ShowTeams> <int: PlayerLists> <int:SplitterDistanceX> <int: SplitterDistanceY>

	Effect:
	ShowTeams – Checks the “Show Teams” checkbox true/false

PlayerLists – 1, 2, 4 active split lists

	Command:
	procon.protected.chat.settings <bool: DisplayJoinLeave> <bool: DisplayOnKillEvent> <int: SelectedDisplayIndex> <int: SelectedYellDisplayTimeIndex>

	Effect:
	DisplayJoinLeave – Checks the “Display join/leaving” checkbox true/false

DisplayOnKillEvent – Checks the “Display kills/deaths” checkbox true/false

SelectedDisplayIndex – 0 = Say, 1 = Yell

SelectedYellDisplayTimeIndex – 0 = 2 Seconds, 1 = 4 Seconds, 3 = 8 Seconds (default) etc.

	Command:
	procon.protected.lists.settings <bool: ManualBanningClosed>

	Effect:
	ManualBanningClosed – Shows or hides the manual banning popout in the banlist tab.

	Command:
	procon.protected.console.settings <bool: EnableConsoleOutput> <bool: EnableEvents> <bool: EnableDebug> <bool: EnablePunkbusterOutput>

	Effect:
	EnableConsoleOutput – Checks the “Enable Output” checkbox true/false

EnableEvents – Checks the “Events” checkbox true/false

EnableDebug – Checks the “Debug” checkbox true/false

EnablePunkbusterOutput – Checks the “Enable Output” checkbox true/false

Accounts
	Command:
	procon.public.accounts.create <string: username> <string: password>

	Effect:
	Create <username>’s account.

	Command:
	procon.public.accounts.delete <string: username>

	Effect:
	Delete <username>’s account.

	Command:
	procon.public.accounts.setPassword <string: username> <string: password>

	Effect:
	Sets <username>’s password to <password>

Plugins

	Command:
	procon.protected.plugins.enable <string: classname> <bool: enabled>

	Effect:
	Enables or disables a plugin on the current connections layer.

	Command:
	procon.protected.plugins.setVariable <string: classname> <string: variablename> <string: value>

	Effect:
	Sets <classname> plugin’s <variablename> to <value>

	Command:
	procon.protected.plugins.call <string: classname> <string: MethodName> [<string: param1> ...]

	Effect:
	Calls enabled class <classname>’s public method <MethodName> and parses string[] params

Layers
	Command:
	procon.protected.layer.setPrivileges <string: username> <int: privileges>

	Effect:
	Sets <username>’s account to have <privileges> on the current connections layer.

	Command:
	procon.protected.layer.enable <bool: enabled> [<uint16: port>]

	Effect:
	Enables the layer with <port> if the server is offline, or disables it if online.

	Comments:
	May move to a private command later. The port variable is optional.

Players Tab

	Command:
	procon.protected.reasons.clear

	Effect:
	Clears the drop down boxes of reasons in the punkbuster tab.

	Command:
	procon.protected.reasons.add <string: reason>

	Effect:
	Adds a reason to the drop down box of reasons in the punkbuster tab.

Maplist Tab

	Command:
	procon.protected.maps.clear

	Effect:
	Clears all map names and playlist names.

	Command:
	procon.protected.maps.add <string: playlist> <string: filename> <string: gamemode> <string: publicname>

	Effect:
	Adds a map name and playlist name to the selections in the maplist panel.

Tasks

	Command:
	procon.protected.tasks.clear

	Effect:
	Clears all of the tasks.

	Command:
	procon.protected.tasks.list

	Effect:
	Dumps a list of currently active tasks to the server console.

	Command:
	procon.protected.tasks.remove <string: taskname>

	Effect:
	Removes all tasks with the name <taskname>

	Comments:
	The task name is case sensitive.

	Command:
	procon.protected.tasks.add <string: taskname> <int: delay> <int: interval> <int: repeat> [[vars: commandwords] ...]

	Deprecated:
	procon.protected.tasks.add <int: delay> <int: interval> <int: repeat> [[vars: commandwords] ...]

	Effect:
	Schedules a task to begin <delay> seconds after the connection is logged in and then <interval> seconds thereafter. You can execute a command forever by passing -1 as <repeat> or a set amount of times with a positive number.

	Comments:
	Similar to punkbusters pb_sv_task function. The command words are executed just as if you were executing the command in the console. The deprecated command should not be used; you should name your tasks.
You can name multiple tasks the same name so you can later delete multiple tasks with ease.

	Example:
	procon.protected.tasks.add 0 10 -1 procon.protected.send admin.yell "Intervalized!" 8000 all

	
	procon.protected.tasks.add 0 2 5 procon.protected.pluginconsole.write "Repeating 5 times..."

(This will repeat “Repeating 5 times...” into the plugin console.)

	Example:
	procon.protected.tasks.add 0 10 -1 procon.protected.plugins.enable "CTestPlugin" True

procon.protected.tasks.add 5 10 -1 procon.protected.plugins.enable "CTestPlugin" False

(This will enable and disable CTestPlugin every 5 seconds forever)

Variables

	Command:
	procon.protected.vars.set <string: variablename> <string: value>

	Effect:
	Sets a variable on the current connection/layer.

	Command:
	procon.protected.vars.list

	Effect:
	Dumps a list of variables on the current connection/layer to the server console.

	Command:
	procon.protected.sv_vars.list

	Effect:
	Dumps a list of variables that have been received and saved from the connected procon layer.

Media
	Command:
	procon.protected.playsound <string:pathtosoundfile> <int: repeatcount>

	Effect:
	Plays the file at location <pathtosoundfile> <repeatcount> number of times.

	Comments:
	The file is relative to the procon.exe and can be outside of the plugins directory.

RepeatCount is not optional and must be greater than 0.

Only plays .wav files in PCM format.

Stop sound stops looping the sound, doesn't actually cut the sound off midway.

Only one sound can be played at any time, queuing up multiple sounds will stop the other sound and play the new one.

	Command:
	procon.protected.stopsound

	Effect:
	Stops looping any sounds that are playing.

Private Commands

At the moment these commands can only be executed in procon.cfg and are treated like saved settings and preferences for procon. Their private status may change in the future if there is a need for plugins or by server administrators. They are documented here for completeness and to show others what can potentially be done with the commands if the need arises.
Servers

	Command:
	procon.private.servers.add <string: host> <uint16: port> [<string: password> [<string: username>]]

	Effect:
	Adds, but does not connect a server to procon.

	Command:
	procon.private.servers.name <string: host> <uint16: port> <string: servername>

	Effect:
	Associates a name with the server IP/port even if it has not connected to find out the live information yet.

	Command:
	procon.private.servers.autoconnect <string: host> <uint16: port>

	Effect:
	Sets a previously added server to autoconnect to its server. If the connection is offline but has all of the needed credentials it will attempt a connection.

	Command:
	procon.private.servers.connect <string: host> <uint16: port>

	Effect:
	Attempts a connection of a previously added server.

TCAdmin

	Command:
	procon.private.tcadmin.setPrivileges <string: TargetServerIP> <uint16: TargetServerPort> <string: username> <int: privileges>

	Effect:
	Sets <username>’s account to have <privileges> on a targeted connection..

	Comments:
	This command is to help people using TCAdmin and procon to automate the process.

	Command:
	procon.private.tcadmin.enableLayer <string: TargetServerIP> <uint16: TargetServerPort> <string: BindingIp> <uint16: port> <string: LayerName>

	Effect:
	Enables a layer on a targeted server. Usually added after procon.private.servers.add in procon.cfg.

	Comments:
	Similar to procon.protected.layer.enable but this can be executed in procon.cfg and must specify a target server/ip to enable the layer on. This command is to help people using TCAdmin and procon to automate the process.

Options

	Command:
	procon.private.options.setLanguage <string: shortfilename; *.loc>

	Effect:
	Changes the language to the corresponding file name.

	Command:
	procon.private.options.autoCheckForUpdates <bool: enabled>

	Effect:
	Sets wether procon should automatically check for updates at http://phogue.net

	Command:
	procon.private.options.consoleLogging <bool: enabled>

	Effect:
	Enables or disables log files of the console window.

	Command:
	procon.private.options.eventsLogging <bool: enabled>

	Effect:
	Enables or disables log files of the events tab.

	Command:
	procon.private.options.chatLogging <bool: enabled>

	Effect:
	Enables or disables log files of the chat window.

	Command:
	procon.private.options.showtrayicon <bool: enabled>

	Effect:
	Enables or disabled the icon in the notification area

	Command:
	procon.private.options.minimizetotray <bool: enabled>

	Effect:
	Enables or disabled showing the window in the taskbar when the user minimizes procon.

	Comments:
	procon.private.options.showiconintray must be set to true or this command is ignored.

	Command:
	procon.private.options.closetotray <bool: enabled>

	Effect:
	Enables or disabled showing the window in the taskbar when the user closes the window with the X in the top right corner.

	Comments:
	procon.private.options.showiconintray must be set to true or this command is ignored.

	Command:
	procon.private.options.runPluginsInSandbox <bool: enabled>

	Effect:
	True enables plugins to run in a sandbox, false makes plugins run without restrictions.

	Command:
	procon.private.options.allowAllODBCConnections <bool: enabled>

	Effect:
	True allows all outgoing connections using ODBC (regardless of the listed outgoing connections), false denies all ODBC connections.

	Command:
	procon.private.options.trustedHostDomainsPorts [[<string: strHostDomain> <int: port>] ...]

	Effect:
	Add a trusted host/domain + port to the trusted outgoing connections list.

Interface
	Command:
	procon.private.window.position <string: WindowState> <int: Window.X> <int: Window.Y> <int: Window.Width> <int: Window.Height>

	Effect:
	WindowState – Normal, Minimized, Maximized

Window.N – Four variables to build a System.Drawing.Rectangle of where the window was located and how big it was when procon was shutdown properly.

	Command:
	procon.private.window.splitterPosition <int: SplitterDistance>

	Effect:
	Sets the position of the splitter between the player tree and connections panel.

Global Variables
I had the idea late in the game to use a really basic variable like system so it’s just thrown in for now and will change in the future.

Variable – a variable set in the current executable

SV_Variable – a cache of variables received from the connected procon layer. If you use GetSvVariable in a plugin it will pull the data from this cache instead of the server. You need to issue the command to get a variable from the connected procon layer first.

Variables used by procon

	SERVER_COUNTRY
	The country the server ip is on, pulled from maxmind’s GetCountryName(ip). Default is the connected servers country name.. funny that =)

	TEMP_BAN_CEILING
	The maximum time an account with temp ban privs can do. Stored in seconds. Default is 3600 seconds (1 hour).

	GUEST_PASSWORD
	Sets the password for third-party rcon tools to connect to the procon layer. It’s experimental so the option is not in the gui. Use at your own risk. If this variable is not set (default) or is blank then a login is restricted to those with a username/password pair. Default is not set.

	GUEST_PRIVILEGES
	The privileges an account that logs in with GUEST_PASSWORD and no username will have. Basically a way to restrict what third party rcon tools connecting to the layer can do. Default is not set.

	RESOLVE_PLAYER_HOST
	True/false. Setting to true will resolve a players’ host name when you select them in the playerlist panel. The name is appended to the IP. Default is not set.

	MAX_CONSOLE_LINES
	Default is 75 lines.

	MAX_PLUGINCONSOLE_LINES
	Default is 75 lines.

	MAX_CHAT_LINES
	Default is 75 lines, including any events.

	TEXT_COLOUR_1
TEXT_COLOUR_[1...9]

TEXT_COLOUR_9
	Sets the colours associated with the call of duty style text colouring. See Call of duty text colouring standard.

These values can be any text representation of a Colour in the System.Drawing.Color structure. A good website for reference can be found at http://www.flounder.com/csharp_color_table.htm

Plugins
Notes
Files are saved and loaded in the Unicode encoding.

Ask on the forums. At the time of writing it’s all a little chaotic as far as.. well everything is concerned. Hopefully when the bfbc2 protocol stabilizes and other better programmers take an interest in procon it will become a bit more standard.

While procon is in beta your plugins may stop working. I have not put any version detecting in place for updated interfaces implemented by a plugin.. soo if you make a plugin at the moment and update procon it might just not compile. Sorry about that, will hopefully have API versioning once the dust settles a little =)

Here’s hoping Dice add more features to the protocol so plugins can do some cooler things.
HTTP Server

Purpose

Procon manages plugins, databases within plugins, various connections and soon connections to various games. This established http protocol, with a emphasis on providing JSON formatted responses, will allow for more creativity between procon developers, plugin authors and web masters over an agreed protocol.

It should now be fairly easy to have a clan website display a list of recent chat messages on their website for instance, or a list of who is on their server that is dynamically updated with JSON.

The http server can also poll plugins for responses so a JSON formatted output of a stats logging plugin should be fairly easy to implement.

Cache
By default all plugin requests are cached for 30 seconds. This means if you send the exact same request to a plugin within 30 seconds you’ll be given the same response and the plugin will be bypassed. A plugin can set the cache time in its return response object.
Vanilla Requests
These requests are built into procon. More information may be available later at request.

	Request:
	http://[procon_server_ip]:[http_port]/connections

	Example Request:
	http://255.128.64.32:5050/connections

	Response:
	A list of servers, their connection type, state and version.

	Example Response:
	{"connections":[{"gametype":"BFBC2", "version":"561126", "logged_in":true, "procon_connection":false, "host_name_port":"202.60.82.191:47777", "connected":true}]}

	Request:
	http://[procon_server_ip]:[http_port]/[game_server_ip]:[game_server_query_port]/players

	Example Request:
	http://255.128.64.32:5050/202.60.82.191:47777/players

	Response:
	A list of players with all the information from admin.listPlayers. More information may be added later if requested.

	Example Response:
	{"players":[{"team_id":1, "name":"Phogue", "deaths":0, "score":0, "squad_id":1, "kills":0, "guid":"EA_03B3706AABC7D6920DF0716D9B06E8AF", "clan_tag":"", "ping":0}]}

	Request:
	http://[procon_server_ip]:[http_port]/[game_server_ip]:[game_server_query_port]/chat?history=[requested_history_length]

	Example Request:
	http://255.128.64.32:5050/202.60.82.191:47777/chat?history=10

	Response:
	The last 10 (variable) chat messages from players or admins.

	Example Response:
	{"messages":[{"is_from_server":false, "speaker":"Phogue", "subset":{"type":"Squad", "team_id":1, "squad_id":1, "target":null}, "date_time":"2010-07-28T08:44:11", "message":"and this is only to my squad", "is_yelling":false}, {"is_from_server":false, "speaker":"Phogue", "subset":{"type":"All", "team_id":0, "squad_id":0, "target":null}, "date_time":"2010-07-28T08:44:06", "message":"this is a message in game to everyone", "is_yelling":false}, {"is_from_server":true, "speaker":"Admin", "subset":{"type":"All", "team_id":0, "squad_id":0, "target":null}, "date_time":"2010-07-28T08:42:57", "message":"This is a yelling message to everyone", "is_yelling":true}, {"is_from_server":true, "speaker":"Admin", "subset":{"type":"Player", "team_id":0, "squad_id":0, "target":"Phogue"}, "date_time":"2010-07-28T08:42:43", "message":"This is sent to phogue only", "is_yelling":false}, {"is_from_server":true, "speaker":"Admin", "subset":{"type":"Team", "team_id":1, "squad_id":0, "target":null}, "date_time":"2010-07-28T08:42:32", "message":"This is sent to the attackers only", "is_yelling":false}, {"is_from_server":true, "speaker":"Admin", "subset":{"type":"All", "team_id":0, "squad_id":0, "target":null}, "date_time":"2010-07-28T08:42:23", "message":"This is sent to all players", "is_yelling":false}]}

	Request:
	http://[procon_server_ip]:[http_port]/[game_server_ip]:[game_server_query_port]/chat?newer_than=[ISO8601 date/time]

	Example Request:
	http://255.128.64.32:5050/202.60.82.191:47777/chat?history=2010-07-28T08:42:43

	Response:
	All messages sent after a certain date/time. This time is formatted to ISO8601 specifications.

	Example Response:
	{"messages":[{"is_from_server":true, "speaker":"Admin", "subset":{"type":"Player", "team_id":0, "squad_id":0, "target":"Phogue"}, "date_time":"2010-07-28T08:42:43", "message":"This is sent to phogue only", "is_yelling":false}, {"is_from_server":true, "speaker":"Admin", "subset":{"type":"All", "team_id":0, "squad_id":0, "target":null}, "date_time":"2010-07-28T08:42:57", "message":"This is a yelling message to everyone", "is_yelling":true}, {"is_from_server":false, "speaker":"Phogue", "subset":{"type":"All", "team_id":0, "squad_id":0, "target":null}, "date_time":"2010-07-28T08:44:06", "message":"this is a message in game to everyone", "is_yelling":false}, {"is_from_server":false, "speaker":"Phogue", "subset":{"type":"Squad", "team_id":1, "squad_id":1, "target":null}, "date_time":"2010-07-28T08:44:11", "message":"and this is only to my squad", "is_yelling":false}]}

Plugin Requests

Provided a plugin implements IPRoConPluginInterface6. OnHttpRequest it may receive requests via the http protocol and provide responses in any format. These responses may be in a JSON format, or may be entire websites on their own.
	Request:
	http://[procon_server_ip]:[http_port]/[game_server_ip]:[game_server_query_port]/plugins/[plugin_class_name]/

	Example Requests:
	http://255.128.64.32:5050/202.60.82.191:47777/plugins/CBasicInGameInfo/
http://255.128.64.32:5050/202.60.82.191:47777/plugins/CBasicInGameInfo/?echo=wwhhhaaattt

	Response:
	The CBasicInGameInfo, at the time of writing, will return a “Hello World!” string or echo back whatever is in the query key “echo”.

	Example Responses:
	Hello World!
wwhhhaaattt

